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Six models of contrast microbubbles are investigated to determine the excitation threshold for sub-

harmonic generation. The models are applied to a commercial contrast agent; its characteristic pa-

rameters according to each model are determined using experimentally measured ultrasound

attenuation. In contrast to the classical perturbative result, the minimum threshold for subharmonic

generation is not always predicted at excitation with twice the resonance frequency; instead it

occurs over a range of frequencies from resonance to twice the resonance frequency. The quantita-

tive variation of the threshold with frequency depends on the model and the bubble radius. All mod-

els are transformed into a common interfacial rheological form, where the encapsulation is

represented by two radius dependent surface properties—effective surface tension and surface dila-

tational viscosity. Variation of the effective surface tension with radius, specifically having an

upper limit (resulting from strain softening or rupture of the encapsulation during expansion), plays

a critical role. Without the upper limit, the predicted threshold is extremely large, especially near

the resonance frequency. Having a lower limit on surface tension (e.g., zero surface tension in the

buckled state) increases the threshold value at twice the resonance frequency, in some cases shifting

the minimum threshold toward resonance. VC 2011 Acoustical Society of America.
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I. INTRODUCTION

Encapsulated microbubbles are excellent scatterers of

ultrasound and can significantly improve the contrast of

diagnostic ultrasound images (de Jong et al., 1991; Ferrara

et al., 2007; Goldberg et al., 2001). They also generate

super- and subharmonic signals under strong excitations,

which can be used for harmonic (imaging at twice the excita-

tion frequency) (Chang et al., 1996) and subharmonic (imag-

ing at half the excitation frequency) imaging (Forsberg

et al., 2000; Shankar et al., 1998). Recently, the ambient

pressure dependent variation of subharmonic response from

contrast microbubbles has been proposed as a noninvasive

estimator of the organ-level blood pressure (Adam et al.,
2005; Andersen and Jensen, 2010; Forsberg et al., 2005;

Frinking et al., 2010; Katiyar et al., 2011; Leodore et al.,
2007; Shi et al., 1999). In vitro experiments with a number

of contrast agents registered 5–15 dB decrease with 188 mm

Hg increase in ambient pressure (Adam et al., 2005; Leodore

et al., 2007). Estimation of pressure using subharmonic

response has been successfully demonstrated in vivo as well

(Forsberg et al., 2005). However, a complete understanding

of the nonlinear physics underlying the subharmonic scatter-

ing from contrast microbubbles is currently missing. For free

bubbles, unlike higher harmonics, subharmonic response is

seen only above a threshold excitation; the minimum thresh-

old excitation was shown by a perturbative analysis to occur

at twice the linear resonance frequency (f0) of the bubble

(Eller and Flynn, 1968; Neppiras, 1969; Prosperetti, 1977).

However, contrast microbubbles are encapsulated by a layer

of surface active molecules, such as lipids, proteins, and sur-

factants, which protects them against premature dissolution

(Katiyar and Sarkar, 2010; Katiyar et al., 2009; Sarkar et al.,
2009). The encapsulation affects oscillation and thereby the

linear and nonlinear scattering. Several models of encapsula-

tion have been created to describe the dynamics of contrast

microbubbles (Chatterjee and Sarkar, 2003; Church, 1995;

de Jong et al., 1994; Hoff et al., 2000; Marmottant et al.,
2005; Paul et al., 2010; Sarkar et al., 2005). In this paper, we

numerically investigate the subharmonic response from a

commercially available contrast microbubble, specifically

the threshold for subharmonic generation from Sonazoid

(GE Health Care, Oslo, Norway) comparing the predictions

by several of these models.

Recently, we have shown that theoretical models predict

both increase and decrease of subharmonic response from a

single microbubble with ambient pressure depending on the

ratio of the excitation frequency normalized by the natural

frequency (Katiyar et al., 2011). The result was explained by

investigating the subharmonic resonance curve—the subhar-

monic response shows a distinct peak in the neighborhood of

a particular value of that ratio (�1:6 for a 2lm radius bub-

ble). One would expect that the peak subharmonic response

would occur where generating subharmonic is easiest, i.e.,

where subharmonic threshold is minimum. As noted earlier,

performing a small amplitude expansion of the Rayleigh–-

Plesset (RP) equation showed that this threshold for

free bubbles occurs when it is excited at twice the

resonance frequency (Eller and Flynn, 1968; Neppiras, 1969;
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Prosperetti, 1974). Using a similar analysis on an encapsula-

tion model due to de Jong et al. (1994) showed a minimum

subharmonic threshold also at twice the resonance frequency

(Shankar et al., 1999). Note that the model is based on fric-

tion and elasticity parameters used to model the damping

and the restoring forces from the encapsulation. The same ar-

ticle also reported maximum subharmonic response from

Optison (GE Health Care, Princeton, NJ) at an excitation fre-

quency of 2 MHz, purportedly twice the resonance frequency.

The resonance frequency was computed using the same

model of encapsulation applied to Optison. For the contrast

agent Definity (Lantheus Imaging, N. Billerica, MA), a simi-

lar analysis was performed using the linear viscoelastic model

due to Church (1995)—a lower threshold for subharmonic

was found when excitation frequency was closer to twice the

resonance frequency (Kimmel et al., 2007).

In view of the meager literature, there remains a critical

need for further investigation of the subharmonic threshold

for various contrast microbubbles available today. Above a

critical excitation level, contrast microbubbles are destroyed

(Ammi et al., 2006; Chatterjee et al., 2005a; Chomas et al.,
2001). Determining the threshold for subharmonic genera-

tion is crucial for nondestructive subharmonic applications.

As mentioned earlier, the classical result of minimum thresh-

old at twice the resonance frequency was obtained using a

perturbative analysis of free bubbles and a few early encap-

sulation models that are largely based on linear elastic

behavior of the encapsulation. On the other hand, subhar-

monic response is generated when a contrast microbubble

executes large nonlinear oscillations. There, such linear

models might be inappropriate, warranting more sophisti-

cated nonlinear constitutive models for the encapsulation.

Recently, considerable effort has been devoted toward devel-

oping rigorous models for the encapsulation (Chatterjee and

Sarkar, 2003; Chatterjee et al., 2005b; Doinikov and Dayton,

2007; Hoff et al., 2000; Marmottant et al., 2005; Sarkar

et al., 2005; Tsiglifis and Pelekasis, 2008). We have devel-

oped Newtonian (Chatterjee and Sarkar, 2003) and visco-

elastic (Sarkar et al., 2005) (zero-thickness) interfacial

rheological models of the encapsulation; the molecular na-

ture of the encapsulation and thereby the directional anisot-

ropy justified such a two-dimensional continuum model in

contrast to finite thickness models, e.g., Church (1995); Hoff

et al. (2000); Doinikov and Dayton (2007). We applied the

model to Sonazoid contrast agent to determine its character-

istic parameters using experimentally measured attenuation

and scattering data. For large oscillations, responsible for

subharmonic response, nonlinear changes of surface elastic-

ity representing rupture and buckling of the encapsulation

(Marmottant et al., 2005) or strain-softening (Paul et al.,
2010) have also been incorporated.

In this paper, we execute a detailed numerical investiga-

tion of a number of encapsulation models to determine the ex-

citation threshold for subharmonic generation as a function of

excitation frequency. Specifically, we consider (1) our Newto-

nian model, (2) the de Jong model, (3) the Church–Hoff

model, (4) our constant elasticity model, (5) the Marmottant

model, and (6) our strain-softening exponential elasticity

model (EEM). Each of these models obtains two terms in the

RP equation governing the bubble dynamics—they represent

damping and the elastic resistance of the encapsulation. In

Sec. II, we describe all of them as interfacial rheological mod-

els with an effective radius dependent surface tension and a

dilatational surface viscosity. Note that the surface dilatational

elasticity is the derivative of the surface tension with respect

to the change in area fraction. In Sec. III, we show how differ-

ent radius dependence of effective surface tension leads to dif-

ferent variations of the subharmonic threshold with

normalized excitation frequency (f=f0). Finally, Sec. IV dis-

cusses and summarizes the results.

II. MATHEMATICAL FORMULATION AND NUMERICAL
SOLUTION

A. Free bubble dynamics

To simulate the dynamics of a free microbubble, we use

the following form of the RP equation:

q R €Rþ 3

2
_R2

� �
¼ PG �

2c
R
� 4l

_R

R
� p0 þ pAðtÞ

� R

c

dPG

dt
; (1)

where R is the spherical bubble radius, _R and €R are the first

and the second order time derivatives of the bubble radius R,

q is the liquid density, m is the liquid viscosity, c is the gas–-

liquid surface tension, p0 is the ambient pressure, pA is the

excitation pressure with amplitude PA, and c is the sound ve-

locity in liquid. The last term in Eq. (1) represents compres-

sibility; such a compressible form has been shown to remain

numerically stable at high Mach numbers (Brenner et al.,
2002). We assume that the gas content of the bubble does

not change (i.e., gas diffusion neglected). The gas pressure

PG inside is given by the polytropic law:

PG ¼ PG0

R0

R

� �3k

; (2)

where R0 is the initial bubble radius, PG0
is the initial gas

pressure inside the bubble, and k is the polytropic exponent.

Incorporating Eq. (2) in Eq. (1), we get

q R €Rþ 3

2
_R2

� �
¼ PG0

R0

R

� �3k

1� 3k _R

c

� �
� 2c

R

� 4l
_R

R
� p0 þ pA: (3)

The resonance frequency (f0) for a free bubble is given by

f0 ¼
1

2pR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q
3kp0 þ

2c
R0

ð3k � 1Þ
� �s

; (4)

where c ¼ cw, the pure air–water surface tension

B. Encapsulated bubble dynamics

Most encapsulation models for contrast microbubbles

modify the RP equation adding terms representing the
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contributions due to viscoelastic stresses generated in the

encapsulation. Here, we show for several models that the

viscoelastic terms can be expressed as two effective interfa-

cial stress terms—one due to an effective dilatational surface

viscosity js(R) and the other due to an effective surface ten-

sion c(R). Therefore, the bubble dynamics can be modeled

by a modified RP equation:

q R €Rþ 3

2
_R2

� �
¼ PG0

R0

R

� �3k

1� 3k _R

c

� �
� 2

R
c Rð Þ

� 4 _R

R2
js � 4l

_R

R
� p0 þ pA: (5)

For the encapsulated bubble dynamics, we are considering the

de Jong model (de Jong et al., 1994), the Church–Hoff model

(Hoff et al., 2000), the Marmottant model (Marmottant et al.,
2005), and three of our interfacial models—Newtonian (Chat-

terjee and Sarkar, 2003), constant elasticity (Sarkar et al.,
2005), and exponential elasticity (Paul et al., 2010) models.

For all these models, the effective surface tension c(R) and the

interfacial dilatational surface viscosity js(R) are provided in

the following. Note that the Church–Hoff model assumes a fi-

nite thickness for the encapsulation with bulk properties;

effective interfacial properties are therefore explicit functions

of the shell thickness.

(A) Newtonian model (Sarkar et al., 2005):

c Rð Þ ¼ c; jsðRÞ ¼ js (6)

are both constant, i.e., independent of initial as well as

instantaneous bubble radius during radial oscillations.

Note that for several contrast agents such as Optison

and Sonazoid, this model predicted large values of sur-

face tension c (Chatterjee and Sarkar, 2003). The reso-

nance frequency f0 for the Newtonian model is given by

f0 ¼
1

2pR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q
3kp0 þ

2c
R0

ð3k � 1Þ
� �s

: (7)

(B) de Jong model (de Jong et al., 1994):

c Rð Þ ¼ cw þ Sp
R

R0

� 1

� �
; jsðRÞ ¼ Sf

16p
: (8)

Here Sp is the shell elasticity parameter and Sf is the

encapsulation friction parameter. Note that the effective

surface tension varies linearly with instantaneous bubble

radius and initially it is equal to cw. The resonance fre-

quency (de Jong et al., 1994) is given by

f0 ¼
1

2pR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q
3kp0 þ

2cw

R0

ð3k � 1Þ þ 2Sp

R0

� �s
: (9)

(C) Church–Hoff model (Hoff et al., 2000):

c Rð Þ ¼ 6Gsdsh0

R2
0

R2
1� R0

R

� �
; jsðRÞ ¼ 3lsdsh0

R2
0

R2
: (10)

Here Gs, ls, and dsh0
are the shear modulus, the shear

viscosity, and the thickness of the encapsulation. The

initial value of the effective surface tension c Rð Þ is zero.

The resonance frequency for the Church–Hoff model

(Hoff et al., 2000) is given by

f0 ¼
1

2pR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q
3kp0 þ 12Gs

dsh0

R0

� �s
: (11)

(D) Constant elasticity model (Sarkar et al., 2005):

cðRÞ ¼ c0 þ Esb; and js ¼ js: (12)

Here Es is the constant dilatational surface elasticity,

b ¼ ðR2 � R2
EÞ=R2

E is the area fraction increase, and c0

is the reference surface tension at the undeformed state

with radius RE,

RE ¼ R0 1� c0

Es

� ��1=2

: (13)

RE is obtained from the condition of pressure equilib-

rium PG0
¼ p0 ) c Rð Þ ¼ 0ð Þ at R ¼ R0. The resonance

frequency (Sarkar et al., 2005) is given by

f0 ¼
1

2pR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q
3kp0 �

4c0

R0

þ 4Es

R0

� �s
: (14)

(E) Marmottant model (Marmottant et al., 2005):

c Rð Þ ¼

0 for R� Rbuckling

v
R2

R2
buckling

� 1

 !
for Rbuckling � R� Rrupture;

cw for R� Rrupture

8>>>><
>>>>:

jsðRÞ ¼ js: (15)

Here v is the elastic compression modulus, Rbuckling

¼ R0 1þ c R0ð Þ=v½ ��1=2
, and Rrupture ¼ Rbuckling 1þ cx=½

v�1=2
. In this model, the effective surface tension varies in

an extremely small range of radial oscillation (Rrupture

�Rbuckling � 0:05R0). Above Rrupture the interface acts as

a pure air–water interface, and below Rbuckling it is in a

buckled state where the effective surface tension is zero.

The resonance frequency for the Marmottant model

(Marmottant et al., 2005; van der Meer et al., 2007) is

given by

f0 ¼
1

2pR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q
3kp0 �

2c R0ð Þ
R0

3k � 1ð Þ þ 4v
R0

� �s
: (16)

(F) EEM (Paul et al., 2010):

cðRÞ¼ c0þEsb; Es¼Es
0bexpð�asbÞ and js¼js: (17)
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Here b ¼ ðR2 � R2
EÞ=R2

E is the area fraction, and RE is

the equilibrium radius with zero elastic stress:

RE ¼ R0 1þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c0as=Es

0

p
2a

 !" #�1=2

: (18)

c0 is the constant surface tension in the undeformed state. Es
0

and as are model constants. Note that the interfacial elastic-

ity Es is assumed to be decreasing exponentially with

increasing radius representing a strain softening behavior.

The resonance frequency for an encapsulated bubble due to

the viscoelastic EEM is given by

f0 ¼
1

2pR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q
3kp0 þ

2Es
0

R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c0as=Es

0

p
as

 !
1þ 2as �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c0as=Es

0

q� � !vuut : (19)

C. Encapsulation parameter estimation

We have developed a procedure to estimate the model pa-

rameters using attenuation of ultrasound through a suspen-

sion of microbubbles; it was applied to contrast agents

Optison and Sonazoid (Chatterjee and Sarkar, 2003; Paul et
al., 2010). Here, we only briefly mention the method. Using

the linearized RP equation specific to an encapsulation

model, one can compute the attenuation due to a single

encapsulated bubble. Knowing size distribution, the attenua-

tion due to a suspension of the agent can be computed. An

error function between the measured attenuation and the

modeled attenuation is formulated; minimizing it the model-

specific characteristic parameters of the contrast microbub-

ble are obtained. The unique feature of our characterization

approach is that after determining the characteristic parame-

ters using attenuation, the model was investigated for valida-

tion against a second experimental observation—scattered

subharmonic response. Here, we use the experimentally

measured attenuation through Sonazoid bubbles and its size

distribution to obtain the parameters for all models under

investigation. The model-specific encapsulation parameters

used in the numerical simulations are listed in Table I.

Note that Sonazoid has a mean radius of 1.6lm (Hoff,

2001; Sontum et al., 1999). We find that for such a radius,

none of the above-presented models predicts subharmonic

response for excitation amplitudes, where it has been experi-

mentally observed, i.e., the predicted subharmonic thresholds

for this radius are much higher than the experimental observa-

tions. Specifically, we measured the subharmonic threshold for

Sonazoid to be �200–350 kPa at frequencies 2–6 MHz (Paul

et al., 2010), whereas the models predict no subharmonic for a

bubble of radius 1.6lm at these excitation parameters; the

minimum subharmonic threshold for this radius is computed

as � 500kPa. However, note that the scattered response of

Sonazoid is generated by bubbles of all sizes in its population.

The model prediction accounting for the entire bubble popula-

tion matched extremely well with the experimentally observed

subharmonic response (Paul et al., 2010), indicating major

contributions from bubbles bigger than the average. Therefore,

the number average radius (¼ 1:6lm) is not representative of

the bubbles that are responsible for subharmonic response. We

find such a representative radius by computing a subharmonic

response weighted average of the bubble distribution:

Rsubharmonic ¼

ðRmax

Rmin

RrsubharmonicðR; PA; f ÞNðRÞdRðRmax

Rmin

rsubharmonicðR; PA; f ÞNðRÞdR

: (20)

TABLE I. Characteristic properties of Sonazoid microbubbles according to various encapsulation models. For Levovist microbubbles, only theChurch–Hoff

model is applied.

Encapsulation model

Contrast agent (gas/

encapsulation) Parameters f0jR0¼3lm (MHz)

Newtonian model (Chatterjee

and Sarkar, 2003)

Sonazoid (C4F10/lipid) c¼ 0.6 N/m, js¼ 1� 10�8 N s/m,

k¼ 1.07

1.845

de Jong model (de Jong et al.,

1994)

Sonazoid (C4F10/lipid) Sp¼ 0.89 N/m, Sf¼ 6.67� 10�7 N s/m,

k¼ 1.07

1.7

Church–Hoff model (Andersen

and Jensen, 2009; Hoff et al.,
2000)

Sonazoid (C4F10/lipid) Gs¼ 52 MPa, ls¼ 0.99 Pa s,

dsh0
¼ 4 nm, k¼ 1.07

1.805

Levovist (air/galactose-

palmitic acid)

Gs¼ 88 MPa, ls¼ 1.3 Pa s, dsh0
¼ 6 nm,

k¼ 1.07

2.514

Constant elasticity viscoelastic

model (Sarkar et al., 2005)

Sonazoid (C4F10/lipid) c0¼ 0.019 N/m, Es¼ 0.51 N/m,

js¼ 1.2� 10�8 N s/m, k¼ 1.07

1.661

Marmottant model (Marmottant

et al., 2005)

Sonazoid (C4F10/lipid) c(R0)¼ 0.02 N/m, v¼ 0.53 N/m,

js¼ 1.2� 10�8 N s/m, k¼ 1.07

1.728

Viscoelastic EEM (Paul et al.,

2010)

Sonazoid (C4F10/lipid) c0¼ 0.019 N/m, Es
0¼ 0.55 N/m, a¼ 1.5,

js¼ 1.2� 10�8 N s/m, k¼ 1.07

1.742
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In the neighborhood of the experimentally observed subhar-

monic threshold, 200–400 kPa, and at 2 and 3 MHz excita-

tion frequencies, Rsubharmonic � 3lm. Therefore, we have

presented our results for a Sonazoid bubble of radius 3lm,

unless otherwise stated, and the resonance frequency is com-

puted using this value (Table I). We have also briefly consid-

ered effects of radius variation.

For the free and the encapsulated bubbles, Eqs. (3) and

(5) are solved, respectively, using a stiff solver (ODE15s) in

MATLAB
VR

(Mathworks Inc., Natick, MA) with initial condi-

tions R ¼ R0 and _R ¼ 0. The scattered pressure Ps tð Þ by a

bubble is (Paul et al., 2010)

PS r; tð Þ ¼ q
R

r
2 _R2 þ R €R
� �

: (21)

We use the Fast Fourier Transform (FFT) routine of MATLAB

to obtain the power spectrum. For the FFT, we only use the

part of the simulation where transients have subsided. We

use the peak values corresponding to the different frequen-

cies (i.e., fundamental or different harmonic) in contrast to

an integrated value around the peak used in other references

(Andersen and Jensen, 2009; Frinking et al., 2010). The res-

onance frequency used to normalize excitation frequency for

a particular model is model specific and has been determined

by appropriate formula. We use q¼ 1 000 kg/m3, l¼ 0.001

kg/m s, and c¼ 1485 m/s. To determine the threshold for

subharmonic generation, we obtain the variation of subhar-

monic component with excitation pressure. At low excitation

pressures, there is no subharmonic component distinct from

the noise level. With increasing excitation pressure, the sub-

harmonic component appears; it grows quickly followed by

gradual saturation and eventual disappearance. The excita-

tion pressure just above which a distinct subharmonic peak

appears is selected as the subharmonic threshold.

III. RESULTS

A. Free bubble dynamics

For a free bubble of radius 3lm, the frequency depend-

ent subharmonic threshold at different excitation frequencies

normalized by the resonance frequency is plotted in Fig. 1.

The minimum threshold is obtained at twice the resonance

frequency in conformity with the previous theoretical work

on radial oscillations of a free bubble (Eller and Flynn,

1968; Prosperetti, 1977). The absolute value of the minimum

threshold obtained is 48 kPa. Note that there is a local mini-

mum of the subharmonic threshold near the resonance fre-

quency. The simulation does not show any subharmonic

response for frequencies 1:15 � f=f0 � 1:35. However at

slightly different radius R0 ¼ 2lm (also shown in Fig. 1), we

find subharmonic response in the entire frequency range con-

sidered. Further numerical investigation shows that, for

R0 � 2lm, the subharmonic threshold is obtained for the

whole range of frequency. However, the threshold increases

with decreasing radius. As has been shown in Sec. II, for an

encapsulated microbubble, the interfacial stresses due to the

deforming encapsulation changes the effective surface ten-

sion. Next, we discuss its effects.

B. Encapsulated bubble dynamics

(A) Newtonian model: The Newtonian model is one of the

simplest modifications to the RP equation. It predicted

an unusually large value for the surface tension c, but

was able to predict experimentally observed fundamen-

tal as well as subharmonic scattering from Sonazoid and

Optison microbubbles (Chatterjee and Sarkar, 2003;

Sarkar et al., 2005). In Fig. 2, the global minimum of

the subharmonic threshold is obtained at twice the reso-

nance frequency, along with a local minimum at the res-

onance frequency. In the range of excitation frequency

(0.8� f/f0� 2.3), the predicted values of the subhar-

monic threshold (385–570 kPa) are in close proximity to

those obtained experimentally for a suspension of Sona-

zoid microbubbles (200–350 kPa) (Sarkar et al., 2005).

The numerically predicted subharmonic thresholds of

this model are also less than the destruction threshold

range (600 kPa–1.6 MPa) of Sonazoid microbubbles

(Shi et al., 2000).

FIG. 1. Variation of the subharmonic threshold of a free bubble with nor-

malized excitation frequency.

FIG. 2. Variation of the subharmonic threshold of a Sonazoid microbubble

with normalized excitation frequency as predicted by the Newtonian interfa-

cial rheological model.
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(B) de Jong model: In Fig. 3, we plot the subharmonic thresh-

old for a Sonazoid contrast microbubble using the de Jong

model (de Jong et al., 1994). The inset in Fig. 3 (the solid

line) shows a linear variation of the effective surface ten-

sion with instantaneous radius. Similar to the free bubble

case, the de Jong model also predicts a global minimum

of the subharmonic threshold near twice the resonance

frequency. However, unlike the free bubble model and the

Newtonian model, this model does not show any local

minimum near the resonance frequency. From the inset of

Fig. 3, note that this model predicts much larger values

of the effective surface tension c Rð Þ 	 cwð Þ for an

expanding bubble R > R0ð Þ. This restricts bubble oscilla-

tions and thereby results in a much larger subharmonic

thresholds (650 kPa–3.3 MPa) than the experimentally

observed values (200–350 kPa) in the frequency range

0:8 < f=f0 < 3. It has been proposed, e.g., in the Marmot-

tant model that the encapsulation experiences a rupture as

the radius increases and the surface tension thereafter is

limited by its value at the pure air–water interface (Mar-

mottant et al., 2005). We therefore apply an upper limit

on the effective surface tension such that c � cw (shown

by the dashed line in the inset of Fig. 3). Note that this

modification of the higher values of the effective surface

tension does not affect the subharmonic threshold varia-

tion at frequencies around twice the resonance frequency,

particularly for f=f0 > 2 (shown with dashed line in Fig.

3). However, the large subharmonic thresholds around the

resonance frequency are drastically reduced. Thus we

conclude that increasing surface tension for an expanding

bubble contributes to the larger subharmonic threshold

around the resonance frequency. However, overall varia-

tion of the threshold curve retains the V shape with a min-

imum at twice the resonance frequency.

(C) Church–Hoff model: In Fig. 4, we plot the subharmonic

threshold for Sonazoid according to the model originally

proposed by Church (1995) and later modified by Hoff

et al. (2000). In the inset, we show the variation of the

effective surface tension with bubble radius. In compari-

son with the model by de Jong, this model limits the

increase in the effective surface tension during bubble

expansion. For the given model-specific properties of

Sonazoid microbubbles (Andersen and Jensen, 2009),

the effective surface tension increases to a maximum of

2.57 times the air–water surface tension value. On the

other hand, during compression, this model predicts a

steep increase in compressive interfacial stress

(c=cw ¼ �70 at R=R0 ¼ 0:5). This model, for Sonazoid,

predicts a global minimum of the subharmonic threshold

at twice the resonance frequency. However, the mini-

mum is quite shallow and there also exists another local

minimum of comparable magnitude near the resonance

frequency. Although the curve with two minima is simi-

lar to what is seen for a free bubble as well as the New-

tonian model for an encapsulated bubble, there is a

wider frequency band (0:6 � f=f0 � 2:2) in which the

subharmonic thresholds are of comparable magnitude

and much smaller than those outside this frequency

range. Our main interest lies in the qualitative features

of a model which are robust to slight variation of model

parameters. Therefore, to further explore this model, we

apply it to another contrast agent, Levovist (Schering

AG, Berlin, Germany) (parameters are listed in the

same Table I). We plot the threshold and the effective

surface tension in the same figure (Fig. 4). For Levovist,

this model predicts larger negative values of surface ten-

sion (c=cw ¼ �150 at R=R0 ¼ 0:5) for bubbles in com-

pression. We see here that the minimum at the

resonance frequency is slightly deeper than the one at

twice the resonance. This further substantiates our con-

clusion that the minimum has a wider valley between

the values from resonance to twice the resonance with

two shallow minima at those points. The precise feature

FIG. 3. Variation of the subharmonic threshold of a Sonazoid microbubble

with normalized excitation frequency according to the de Jong model. Inset:

Variation of the effective surface tension with instantaneous radius for the

same contrast microbubble. Solid line: The original de Jong model. Dashed

line: The de Jong model with an upper limit on the effective surface tension

[c ¼ cw for c Rð Þ > cw].

FIG. 4. Variation of the subharmonic threshold of a Sonazoid and a Levov-

ist microbubble with normalized excitation frequency as predicted by the

Church–Hoff model. Inset: Variation of the effective surface tension with

instantaneous radius for these contrast agents.
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of the curve depends on the specific values of the model

parameters.

(D) Constant elasticity model: The zero-thickness Newto-

nian interfacial rheology model by Chatterjee and

Sarkar (2003) was later modified by incorporating a

dilatational surface elasticity Es. The inclusion of a sur-

face elasticity in the modified RP equation allowed

them to obtain a realistic value of surface tension (lower

than that at the air–water interface) for the Sonazoid

microbubbles. However, the constant elasticity model

was not able to predict the experimentally observed sub-

harmonic scattering (Sarkar et al., 2005). This can also

be seen in Fig. 5, where we see that the lowest threshold

occurring near twice the resonance frequency is 920

kPa, which is much larger than the values (200–350

kPa) observed experimentally. Similar to the de Jong

model, this model predicts a single minimum subhar-

monic threshold near twice the resonance frequency and

no minimum around resonance. The curve is also asym-

metric in that for f=f0 � 2, values of the subharmonic

threshold are much smaller than those for f=f0 < 2. In

the inset of Fig. 5, note that due to the quadratic increase

of the effective surface tension with instantaneous ra-

dius, this model predicts a steep increase in the tensile

stress (c=cw ¼ 20 at R=R0 ¼ 2) during expansion. Such

large tensile stresses limit the radial expansion resulting

in the extremely large subharmonic thresholds.

(E) Marmottant model: Next we consider the model devel-

oped by Marmottant and co-workers (Marmottant et al.,
2005) in Fig. 6. Unlike the free bubble and other encap-

sulation models, it does not predict any minimum sub-

harmonic threshold at any particular value of excitation

frequency; rather it predicts lower subharmonic thresh-

olds over a wider frequency band 0:8 < f=f0 < 1:4 [Fig.

6(a)]. Keeping the encapsulation properties the same,

we investigate the effects of the initial bubble radius on

the subharmonic threshold [Fig. 6(b)]. Subharmonic

threshold increases with decreasing initial bubble radius.

Note that for none of these radii, threshold is minimum

FIG. 5. Variation of the subharmonic threshold of a Sonazoid microbubble

with excitation frequency as predicted by the constant elasticity viscoelastic

model. Inset: Variation of the effective surface tension with instantaneous

radius for the same contrast agent.

FIG. 6. Variation of the subharmonic

threshold of a Sonazoid microbubble

with normalized excitation frequency

(a) as predicted by the Marmottant

model. Inset: Variation of the effec-

tive interfacial tension with instanta-

neous radius for the same contrast

agent. (b) Effect of the radius varia-

tion on the same model keeping

everything else the same. (c) Mar-

mottant model without any limit on

effective surface tension (solid line)

and with only a lower limit on the

effective surface tension (c ¼ 0

for R � Rbuckling) (dashed line). (d)

Marmottant model with only an

upper limit on the effective surface

tension (c ¼ cw for Rrupture) (solid

line) and the original Marmottant

model (dashed line).
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around twice the resonance frequency. For larger micro-

bubbles, the valley of lower thresholds is over a wider

frequency band. Decreasing the radius shrinks the fre-

quency band of the lower subharmonic thresholds, con-

verging on the resonance frequency. For a polydisperse

bubble distribution, minimum threshold would occur at

different frequencies for different sizes. Also note that

for 1:6lm—the number average radius of Sonazoid—

the subharmonic threshold is too high.

The Marmottant model [Eq. (15)] prescribes three

different ranges of variation of the effective surface

tension with instantaneous bubble radius. The variation

is linear with area fraction, and therefore quadratic with

radius between a lower limit—buckling radius,

below which surface tension becomes zero

(c ¼ 0 for R < Rbuckling)and an upper limit—rupture ra-

dius where the surface tension becomes identical to that

of an air–water interface c ¼ cw for Rrupture. We investi-

gate the effects of these two limits on subharmonic

thresholds by relaxing them. Note that the initial surface

tension is nonzero (0.02 N/m). In Fig. 6(c), we plot the

threshold without any limits whereby the form of the

Marmottant model becomes identical to the constant elas-

ticity model (12). Consequently, the results are also simi-

lar to the one in Fig. 5, with a much larger minimum

threshold (930 kPa) near twice the resonance frequency,

and no minimum at the resonance. The threshold values

are much larger than the ones (200–350 kPa) experimen-

tally observed. Therefore, one or both of these limits on

the effective surface tension cause the minimum thresh-

old to shift away from twice the resonance frequency to a

valley around the resonance frequency simultaneously

lowering the absolute values of threshold there. Next, we

only remove the upper limit, in that we allow the surface

tension to increase above cw for Rrupture but impose the

lower limit (c ¼ 0 for R � Rbuckling) on the effective sur-

face tension [dashed line in Fig. 6(c)]. Imposing only the

lower limit, i.e., non-negative surface tension, does not

significantly alter the result. Therefore the lower limit,

without the upper limit, does not play a significant role in

subharmonic threshold. In Fig. 6(d), only the upper limit

on the effective surface tension (c ¼ cw for R � Rrupture)

is applied but it is allowed to become negative during

compression (shown in the inset with a solid line). The

subharmonic threshold shows a minimum over a broad

valley of excitation frequency (from the resonance fre-

quency to twice the resonance frequency) similar to the

original Marmottant model. Therefore, we note that

applying the upper limit on the surface tension drastically

reduces the threshold values, particularly at lower fre-

quencies (f=f0 < 2). Further applying the lower limit

slightly increases the thresholds and shifts the minimum

away from twice the resonance frequency.

(F) EEM: Finally, we consider the EEM. To incorporate the

effects of strain softening, we modified the constant

elasticity model by assuming the interfacial elasticity to

decrease exponentially with increasing surface area

(Paul et al., 2010). The resulting surface tension versus

bubble radius is shown in the inset of Fig. 7(a). The

model gives rise to a broad valley of lower threshold

FIG. 7. Variation of the subhar-

monic threshold of a Sonazoid

microbubble with normalized excita-

tion frequency (a) as predicted by

the viscoelastic EEM. Inset: The

variation of the effective surface ten-

sion with instantaneous radius for

the same contrast agent. (b) Effects

of radius variation on viscoelastic

EEM. (c) Non-negative [c ¼ 0ifc Rð Þ
< 0] viscoelastic EEM. (d) Effects of

radius variation on the non-negative

[c ¼ 0 if c Rð Þ < 0] viscoelastic EEM.

For the non-negative cases (c) and

(d), f n
0 is defined in the text.
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values from the resonance frequency to twice its value

with shallow minima at those two values [Fig. 7(a)].

Note that the model has an upper limit on surface ten-

sion, twice the value at a pure air–water interface, simi-

lar to the Marmottant model as well as Church–Hoff

model. However, unlike the Marmottant model, it

allows surface tension to be negative. In conformity

with the above-presented discussion for the Marmottant

model, where we show that the upper limit on the sur-

face tension during the expansion phase is critical in

determining the subharmonic threshold, we find here

that the broad features are similar to the Marmottant and

the Church–Hoff models. In Fig. 7(b), we see the effects

of variation of the initial radius—larger bubble radii

sharpen the minimum near twice the resonance fre-

quency, while for smaller radii the minimum is near but

at slightly lower value than the resonance frequency,

similar to the Marmottant model shown in Fig. 6(b).

Finally, we investigate the effects of non-negativity

imposed in the buckled state similar to the Marmottant

model. The zero surface tension in the buckled state for

R < Rbuckling facilitates compression which gave rise to

“compression-only” behavior observed for certain con-

trast microbubbles (Marmottant et al., 2005). We have

recently shown that the compression-only behavior is a

low-excitation phenomenon and can also be predicted by

the EEM model, if the non-negativity is enforced on the

effective surface tension (Paul et al., 2010). However,

imposing non-negativity makes c Rð Þ not differentiable at

R ¼ R0 [inset of Fig. 7(c)], making linearization impossi-

ble and thereby resonance frequency unobtainable ana-

lytically. Note that for the above-considered Marmottant

model, initial surface tension c R0ð Þ ¼ 0:02N=M; using

zero c R0ð Þ in the Marmottant model would lead to identi-

cal nondifferentiability. Numerically, we find that reso-

nance (maximum fundamental response) occurs at

different frequencies in the range 0.7f0–0.8f0 (f0 is the

resonance frequency for the original EEM model) for dif-

ferent excitations, even for very small excitations. We

choose f n
0 ¼ 0:75f0 to normalize the excitation frequency

in Fig. 7(c). Imposing non-negativity gives a single mini-

mum threshold at the resonance frequency. This is con-

sistent with what we saw before for the Marmottant

model that imposing non-negativity shifts minimum

threshold toward the resonance frequency. Figure 7(d)

investigates the effects of radius variation with non-

negative EEM model to note that for larger bubble radii,

there actually exists a second minimum at twice the reso-

nance frequency which disappears for R0 � 4lm. It

should be noted that imposing strict non-negativity leads

to a bubble never achieving a state of compression. On

the other hand, compressive stress leads to buckling of

the encapsulation.

IV. DISCUSSION AND SUMMARY

In this paper, we have performed a detailed numerical

investigation of the threshold excitation for subharmonic

generation according to six different models of contrast

microbubbles—(1) Newtonian model, (2) de Jong model, (3)

Church–Hoff model, (4) constant elasticity model, (5) Mar-

mottant model, and (6) strain-softening exponentially elas-

ticity model. We have presented each of these models in a

common interfacial rheological form where their encapsula-

tion stresses are defined by two terms—an effective radius

dependent surface tension cðRÞ and an effective dilatational

viscosity jsðRÞ. Through their appearance in the generalized

RP equation they govern the dynamics of a single contrast

microbubble. Here, we argue that the qualitative behavior of

the subharmonic thresholds according to different models is

determined by the effective interfacial rheological parame-

ters in that model.

Simulated subharmonic thresholds for free bubble and

one with a Newtonian encapsulation (the same as the free

bubble but with a larger value of surface tension and a non-

zero dilatational interfacial viscosity) both display a mini-

mum at twice the resonance frequency as predicted by

classical perturbative analysis. There also exists a distinct

local minimum near the resonance frequency. The absolute

value of the subharmonic threshold is higher for Sonazoid

according to the Newtonian model compared to a free bubble

of the same size because of the larger surface tension value

for the former. The values are in close proximity to what has

been found experimentally (Paul et al., 2010).

Although de Jong and constant elasticity models assume

linear and quadratic variation, respectively, of effective sur-

face tension with radius, both predict very high surface ten-

sion in the expansion phase and thereby much higher and

unrealistic threshold values with a single minimum around

twice the resonance. The overall feature of the threshold

curves is also similar for these two models. Note that this also

explains the failure of the constant elasticity model to predict

the subharmonic response as reported in Sarkar et al. (2005).

The Church–Hoff model was originally developed by

Church treating the encapsulation as a viscoelastic layer of

finite thickness having a bulk viscosity and a bulk elastic

modulus. Hoff later derived a small thickness version of the

same. Here we obtain an effective zero-thickness interfacial

representation of the stresses. The effective surface tension

is found to vary as a polynomial of the inverse of bubble ra-

dius; it does not grow beyond a certain value, but can

decrease steeply during compression. Note that the Church–-

Hoff model assumes a linear bulk elastic property for the

encapsulation material and the constant elasticity model

assumes a linear interfacial elastic property. Doinikov et al.
(2009) stated that these two models and the de Jong model

are qualitatively identical. In contrast, we note here that the

effective surface tension term in each model is qualitatively

different, and so are their subharmonic responses. The upper

limit on surface tension is also there in the Marmottant and

the exponential elasticity models. In the Marmottant model,

for radius above a critical value (Rrupture) the encapsulation

ruptures and the surface tension assumes the value of an

air–water interface. The EEM was developed motivated by

the failure of the constant elasticity model that insinuated

“strain-softening” as the bubble grows. Here the surface

elasticity exponentially decreases causing the surface tension
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to initially increase with radius, but finally saturate. An

effective surface tension with an upper bound for these mod-

els (in contrast to larger surface tension values in the growth

phase for others) makes the bubble less stiff during expan-

sion, giving rise to lower thresholds for subharmonic genera-

tion specifically near resonance. The threshold curves for all

three models have a broad valley of low threshold values

around the resonance and twice the resonance frequencies

with shallow minima at both. The threshold minima at reso-

nance and twice the resonance are comparable and depend

on radius and the property values.

Note that the classical perturbative results about subhar-

monic threshold being at twice the resonance frequency

were obtained with the assumption of small overall damping

of the system. This is also the case for the perturbative analy-

sis of free bubbles. (Eller and Flynn, 1968; Prosperetti,

1977). Eller and Flynn specifically showed that with the

introduction of damping the threshold curve changes from a

V shape for an undamped system to a rounded U shape with

the minimum at twice the resonance frequency increasing

with damping. The encapsulation introduces additional

damping represented by the interfacial dilatational viscosity

jsðRÞ into bubble dynamics. The total nondimensional

damping of an encapsulated bubble is

d ¼ dliquid þ drad þ dencapsulation;

dliquid ¼
4l

qx0R2
0

;

drad ¼
3kPG0

qx0R0c
;

dencapsulation ¼
4js

qx0R3
0

:

(22)

With the material parameters listed in Table I, which are

experimentally determined for Sonazoid, one obtains

dliquid � 0:04, drad � 0:006, and dencapsulation � 0:13. The

encapsulation increases the damping by an order of magnitude

compared to a free bubble. Increased damping typically

decreases nonlinear response, and hinders subharmonic gener-

ation. Indeed among all three damping terms, dencapsulation

increases most rapidly with decreasing radius. Figures 6 and 7

show that with decreasing radius, with the same material pa-

rameters, the absolute value of the threshold increases, and the

distinct minimum at twice the resonance frequency disappears.

The surface tension variation for each of these models is

different, except for the upper bound. The Marmottant model

is identical to the constant elasticity model between a lower

(buckling) and an upper (rupture) limit Rbuckling

< R < Rrupture—quadratic variation of effective surface ten-

sion with c ¼ 0 for R � Rbuckling and c ¼ cw for R � Rrupture.

The EEM model does not have any lower limit, and here the

constant elasticity model is modified by assuming the dilata-

tional surface elasticity to soften exponentially with area frac-

tion. Despite these differences, the threshold curves look

qualitatively similar, although precise details depend on pa-

rameter values and bubble radii. For instance, increasing the

bubble radius (keeping the property values the same) makes

the minimum at twice the resonance more prominent than the

one near resonance for both the Marmottant and EEM

models.

Removing the upper limit (c ¼ cw for R � Rrupture) in

the Marmottant model, i.e., allowing the surface tension to

increase in the expansion phase, drastically changes the

threshold curve—it becomes similar to those due to the de

Jong and the constant elasticity models giving rise to

much higher threshold values especially at the resonance

frequency. On the other hand, removing only the lower

limit (c ¼ 0 for R � Rbuckling) does not change the curve

much; it promotes the minimum at twice the resonance

frequency. Similarly, imposing such a lower limit on the

EEM model degrades the minimum at twice the resonance

frequency.

We conclude that the minimum threshold for subhar-

monic generation from an encapsulated contrast microbubble

is not necessarily at twice the resonance frequency. Depend-

ing on the model, it occurs in a range from resonance to

twice the resonance frequency. The actual minimum for a

contrast agent would also depend on the bubble size distribu-

tion. Finally, here we study a specific contrast agent Sona-

zoid using models with a fixed set of material properties.

Changing them would affect the subharmonic threshold, an

effect to be investigated in the future.
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